Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
1.
Diabetologia ; 65(9): 1436-1449, 2022 09.
Article in English | MEDLINE | ID: covidwho-1888846

ABSTRACT

AIMS/HYPOTHESIS: Diabetes has been recognised as a pejorative prognostic factor in coronavirus disease 2019 (COVID-19). Since diabetes is typically a disease of advanced age, it remains unclear whether diabetes remains a COVID-19 risk factor beyond advanced age and associated comorbidities. We designed a cohort study that considered age and comorbidities to address this question. METHODS: The Coronavirus SARS-CoV-2 and Diabetes Outcomes (CORONADO) initiative is a French, multicentric, cohort study of individuals with (exposed) and without diabetes (non-exposed) admitted to hospital with COVID-19, with a 1:1 matching on sex, age (±5 years), centre and admission date (10 March 2020 to 10 April 2020). Comorbidity burden was assessed by calculating the updated Charlson comorbidity index (uCCi). A predefined composite primary endpoint combining death and/or invasive mechanical ventilation (IMV), as well as these two components separately, was assessed within 7 and 28 days following hospital admission. We performed multivariable analyses to compare clinical outcomes between patients with and without diabetes. RESULTS: A total of 2210 pairs of participants (diabetes/no-diabetes) were matched on age (mean±SD 69.4±13.2/69.5±13.2 years) and sex (36.3% women). The uCCi was higher in individuals with diabetes. In unadjusted analysis, the primary composite endpoint occurred more frequently in the diabetes group by day 7 (29.0% vs 21.6% in the no-diabetes group; HR 1.43 [95% CI 1.19, 1.72], p<0.001). After multiple adjustments for age, BMI, uCCi, clinical (time between onset of COVID-19 symptoms and dyspnoea) and biological variables (eGFR, aspartate aminotransferase, white cell count, platelet count, C-reactive protein) on admission to hospital, diabetes remained associated with a higher risk of primary composite endpoint within 7 days (adjusted HR 1.42 [95% CI 1.17, 1.72], p<0.001) and 28 days (adjusted HR 1.30 [95% CI 1.09, 1.55], p=0.003), compared with individuals without diabetes. Using the same adjustment model, diabetes was associated with the risk of IMV, but not with risk of death, within 28 days of admission to hospital. CONCLUSIONS/INTERPRETATION: Our results demonstrate that diabetes status was associated with a deleterious COVID-19 prognosis irrespective of age and comorbidity status. TRIAL REGISTRATION: ClinicalTrials.gov NCT04324736.


Subject(s)
COVID-19 , Diabetes Mellitus , COVID-19/epidemiology , Cohort Studies , Comorbidity , Diabetes Mellitus/epidemiology , Female , Humans , Male , Prognosis , SARS-CoV-2
2.
EMBO Mol Med ; 12(10): e13038, 2020 10 07.
Article in English | MEDLINE | ID: covidwho-722035

ABSTRACT

Early in the COVID-19 pandemic, type 2 diabetes (T2D) was marked as a risk factor for severe disease and mortality. Inflammation is central to the aetiology of both conditions where variations in immune responses can mitigate or aggravate disease course. Identifying at-risk groups based on immunoinflammatory signatures is valuable in directing personalised care and developing potential targets for precision therapy. This observational study characterised immunophenotypic variation associated with COVID-19 severity in T2D. Broad-spectrum immunophenotyping quantified 15 leucocyte populations in peripheral circulation from a cohort of 45 hospitalised COVID-19 patients with and without T2D. Lymphocytopenia and specific loss of cytotoxic CD8+ lymphocytes were associated with severe COVID-19 and requirement for intensive care in both non-diabetic and T2D patients. A morphological anomaly of increased monocyte size and monocytopenia restricted to classical CD14Hi CD16- monocytes was specifically associated with severe COVID-19 in patients with T2D requiring intensive care. Increased expression of inflammatory markers reminiscent of the type 1 interferon pathway (IL6, IL8, CCL2, INFB1) underlaid the immunophenotype associated with T2D. These immunophenotypic and hyperinflammatory changes may contribute to increased voracity of COVID-19 in T2D. These findings allow precise identification of T2D patients with severe COVID-19 as well as provide evidence that the type 1 interferon pathway may be an actionable therapeutic target for future studies.


Subject(s)
COVID-19/pathology , Diabetes Mellitus, Type 2/pathology , Monocytes/physiology , Aged , COVID-19/complications , COVID-19/virology , Chemokine CCL2/genetics , Chemokine CCL2/metabolism , Diabetes Mellitus, Type 2/complications , Female , Humans , Immunophenotyping , Inflammation/etiology , Interleukin-6/genetics , Interleukin-6/metabolism , Leukocytes, Mononuclear/cytology , Leukocytes, Mononuclear/metabolism , Lipopolysaccharide Receptors/metabolism , Lymphopenia/diagnosis , Male , Middle Aged , Monocytes/cytology , Monocytes/pathology , Risk Factors , SARS-CoV-2/isolation & purification , Severity of Illness Index
SELECTION OF CITATIONS
SEARCH DETAIL